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Prolog

Solis is a one-dimensional semiconductor device simulator with a high-performance and modular
calculation engine coded in C++ and a user-friendly interface developed in C and completely
independent from the calculation engine. Solis implements the drift-diffusion model and simulates
graded or abrupt heterostructures (for solar cells, detectors, etc.) taking into account various
recombinations mechanisms (Auger, radiative and Shockley-Read-Hall (SRH)), traps (donor-like
and acceptor-like), incomplete dopants ionization, Schottky rectifying contacts, spontaneous and
piezoelectric polarization in III-N materials, photogeneration using AM1.5 solar spectrum or any
user-defined spectrum, etc. It outputs the current-voltage, capacitance-voltage and quantum
efficiency, in addition to band diagram, spatial distribution of carriers density, ionized dopants
and traps, generation/recombination, electric field, etc. Solis was designed with portability,
flexibility and performance as the main criteria, e.g. its core simulation engine is coded in
standard C++ with no dependency on any proprietary system, it natively supports Linux and
Windows, all the physical models can be set using the integrated and fast scripting engine, and
the discretization scheme, initial guess, voltage and wavelength sweep... can be defined by the
user. The Solis input format is an easy-to-use plain text format with simple syntax and some
useful features such as variable definition and mathematical parser. I started developing Solis in
2009 and presented the first testing release in the 37th International Symposium on Compound
Semiconductors (ISCS) in 2010 in Japan [2].

The Solis distribution includes the following independent tools, as also shown in figure 1:

• The simulator driver, soliscomp.exe (or soliscomp under Linux), controlling the simula-
tor engine implementing the drift-diffusion model. It solves the coupled Poisson-Continuity
equations of the drift-diffusion model using a high-performance and fully modular C++
code. It implements a finite difference scheme and uses both fully coupled Newton method
and the decoupled Gummel iterative method. The simulator integrates also a Lua script-
ing engine that can be used to implement user-defined physical models and parameters
permitting an advanced control of the simulation process. Lua was choosen as a scripting
language due to its speed (optimized, thanks to the included Just-In-Time LuaJIT inter-
preter), simplicity and light footprint. The simulator driver is a command line executable
with a device input in a simple and clean text format. It can be easily controlled and
automated by any language (Bash, Python... and Lua!) giving the user an unprecedented
flexibility control over the simulation.

• A graphical device editor, solisdevice.exe (or solisdevice under Linux), implemented in
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2 Prolog

C. This tool gives an easy-to-use graphical frontend to Solis.

• An advanced code editor, solisedit.exe (or solisedit under Linux), implemented in C,
to edit the device structure using the straightforward Solis syntax. This editor offers all
functionality found in modern editors such as syntax highlighting, autocompletion, markers,
indentation control, find/replace, file explorer... and are fully customizable. In addition to
Solis syntax, it supports Lua, Python, C/C++, LATEX... and can be used as a general code
editor.

• A data plotter, solisplot.exe (Windows) or solisplot (Linux), implemented in C and
C++. This tool is used by Solis to plot the simulation results but could also be used as a
standalone data plotter.

• An advanced scientific calculator, soliscalc.exe (or soliscalc under Linux), implemented
in C. In addition, Solis includes an interactive terminal emulator (solisterm, only under
Linux), a standalone version of the embedded terminal in SolisEdit.

The whole Solis distribution size, including documentation and examples, is less that 10 MB.
These tools are independent. For instance, one can use the command line simulator driver

(soliscomp.exe or soliscomp under Linux) alone (or launch it with Bash, Python, Lua...), or
solisedit.exe to enter the device structure (and the models written in Lua, if any) and start
automatically the simulator, or use the graphical device editor solisdevice.exe to graphically
build the device and simulate it. I myself use the code editor and sometimes the graphical device
editor. An input file created with the code editor can be open/modified by the graphical device
editor and vice-versa. The Solis input format is not tightly linked to any particular tool.

To know if a new version is available, click Menu/Help/Check for Update... or visit my
website: http://www.hamady.org

This Solis user manual is organized as follows:

The first chapter describes the physical theory used in Solis and the related implemented
numerical methods.

The second chapter gives an overview on how to use Solis. It contains the description of the
Solis input format as well as an overview of the physical model definition using the integrated
Lua programming language. This chapter ended with the list of the included semiconductors
along with the corresponding physical parameters.

The third chapter contains the description of the tools included in the Solis distribution, the
code editor, the graphical device editor and the scientific calculator.

The fourth and last chapter gives a set of step-by-step examples.

The bibliography completes the manual.

http://www.hamady.org
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SolisgCodegEditorg[C]

solisedit.exeg(Windows)

soliseditg(Linux)

SolisDevicegEditorg[C]

solisdevice.exeg(Windows)

solisdeviceg(Linux)

Solisg1DgSemiconductorgDevicegSimulatorg[StandardgC++]

LuagScriptinggEngineg[StandardgC]

SolisgPlotterg[C/C++]

solisplot.exeg(Windows)

solisplotg(Linux)

SolisgDriverg[StandardgC++]

soliscomp.exeg(Windows)

soliscompg(Linux)

SolisgCore

SolisgTools

Figure 1: The Schematic Solis architecture. The Solis core part is entirely coded in standard
C++ (the Lua engine being coded in standard C) and is easily portable to almost all operating
systems, in addition to the natively supported Windows and Linux systems. The Solis code
editor, device editor and the data plotter are developed in C (and partly in C++ for the plotter)
and use the IUP GUI toolkit coded in C [3] and the Scintilla component coded in C++ [4].
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6 1.1. Drift-Diffusion Model

Parameter Normalization factor

Permittivity ε0

Potential Thermal voltage kT/q

Energy Thermal energy kT

Carrier concentration N = 1022 m−3

Space Debye length L =
√
ε0kT/(q2N)

Mobility µ0 = 0.1 m2/V s

Recombination β0 = 10−20 m3/s

Continuity factor γ2 = µ0kT/
(
β0qNL2

)
Table 1.1: Normalization parameters used for the drift-diffusion model.

1.1 Drift-Diffusion Model

The drift-diffusion model is the standard physical model used to describe and calculate the
electrical properties of semiconductor devices. It is deduced from the Boltzmann transport
equation and is either versatile and precise to describe the physics of semiconductor devices. A
comprehensive and impressive theoretical development could be found in the Selberherr’s book
[5].

The drift-diffusion model consists basically of three equations: the Poisson equation and the
two current continuity equations as expressed in one-dimension and normalized form as following:

d

dz

(
ε(z)

dV (z)

dz
+ P (z)

)
= n(z) − p(z) +N−

A (z) −N+
D (z) +

∑
t

N−
tA(z) −

∑
t

N+
tD(z)

dJn
dz

= −GR(z)/γ2

dJp
dz

= +GR(z)/γ2

Jn(z) = −n(z)µn
dφn(z)

dz

Jp(z) = +p(z)µp
dφp(z)

dz

(1.1)

With the electrostatic potential V; the spontaneous and piezoelectric polarization P, if any;
the permittivity ε; the free electrons concentration n; free holes concentration p; the ionized
donors N+

D and ionized acceptors N−
A; the ionized donor-like traps N+

tD and ionized acceptor-like
traps N−

tA. Concentrations vary with the position coordinate z. Jn and Jp are the electron and
hole currents and GR the net generation term. γ2 is a normalization parameter (the continuity
factor shown in table 1.1). µn and µp are the electrons and holes mobilities, φn and φp the
quasi-Fermi levels. All parameters in these equations are dimensionless. The normalization
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parameters are defined in table 1.1. Currents are expressed in term of quasi-Fermi levels for
simplicity, and includes both drift and diffusion terms. The net generation term GR(z) includes
light-induced carriers generation (photogeneration), and the various recombination phenomena
including nonradiative Shockley-Read-Hall (SRH), radiative and Auger mechanisms.

The free electrons and holes concentrations are given by:

n(z) = nie
(+V (z)+Vn(z)−φn(z))

p(z) = nie
(−V (z)+Vp(z)+φp(z))

(1.2)

Where ni is the intrinsic carrier concentration. Vn and Vp are the band parameters for hetero-
structures and nonuniform graded materials (i.e. for homostructures Vn = Vp = 0).

The net generation term GR(z) is expressed as:

GR(z) = G(z) −RD(z) −RI(z) −RA(z)

G(z) =

∫
λ
α(λ, z)φ(λ)exp(−α(λ, z)z) dλ

RD = β(np− n2i )

RI =
∑
t

(np− n2i )

τp(n+ niexp(Et − Ei)) + τn(p+ niexp(−Et + Ei))

RA = (np− n2i ) (Cnn+ Cpp)

(1.3)

Where G(z) is the photogeneration rate, RD(z) the direct (radiative) recombination rate, RI(z)

the Shockley-Read-Hall recombination rate and RA(z) the Auger recombination rate. RI(z) ac-
count for dopants and traps (t index stands for trap), each described by an activation energy
Et and electron and hole lifetimes τn and τp. Ei is the intrinsic Fermi level. α(λ) is the ab-
sorption coefficient, varying with the light wavelength λ, and φ the incident light flux. β is the
direct recombination coefficient. Cn and Cp are the Auger coefficients for electrons and holes
respectively.

1.2 Solving Methods

The drift-diffusion model as defined in equation 1.1 is solved to determine three parameters:
the potential V (z) and the quasi-Fermi levels φn(z) and φp(z). The other quantities are then
calculated using these fundamental parameters. The first crucial step in solving these equations
is the discretization scheme. I use the finite difference method with the Scharfetter-Gummel
discretization method [6] that gives the numerical stability needed in these partial differential
equation (PDE) system. The more classical finite difference schemes are completely inefficient
to solve this system.

The discretized PDE system is then solved using two methods implemented in Solis, giving
complete flexibility:

• The Gummel iterative decoupled method. In this method, illustrated in figure 1.1, the three



8 1.2. Solving Methods

equations are solved iteratively until convergence: given a starting set of vectors for the
three parameters (V(z), φn(z) and φp(z)) at each node, Solis solves the Poisson discretized
system, using the Newton-Raphson method, and determine the new value of the potential
vector V(z) in the discretized space. Then the electron continuity equation is solved using
the obtained potential and the new value of the φn(z) vector is determined. After that, the
hole continuity equation is solved, using the same obtained potential and the previously
calculated φn(z), and the new value of the φp(z) vector is determined. And so on. The
solver iterates until convergence. The Gummel method is usually efficient and Solis uses
internally a damping strategy that ensures convergence in most cases. The Gummel method
can converge slowly, particularly for problems where the three drift-diffusion equations are
highly coupled.

• The Newton method that simultaneously solves the discretized full nonlinear drift-diffusion
PDE system using the Newton-Raphson method. This method is suitable for highly coupled
cases and can converge fast providing that a good starting solution is given. Solis uses the
equilibrium solution, or the last saved solution, to provide a starting point for the solver.
Solis can also use the Gummel method to determine the starting solution for the Newton
method.

Internally both Gummel iterative decoupled method and Newton full method use the Newton-
Raphson algorithm to solve the nonlinear system created by the discretization procedure. For
both methods, Solis automatically calculates the starting solution vectors to ensure and speed
up the convergence in most cases.

Solis handles both Dirichlet and Neumann boundary conditions. The device contacts can be
ohmic (ideal or not) or rectifying (Schottky).

The numerical parameters, such as the starting initial guess, the damping parameter and
tolerance, the boundary conditions, can be easily set by the user to handle specific structures.
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Figure 1.1: The Gummel method procedure.
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2.1 Installation

Solis is distributed in a portable version and do not need to be installed. Just download
solis_windows_64bit.zip (Windows 64bit) or solis_linux_64bit.tgz (Linux 64bit), unzip/untar
in any location (local user directory, USB key or Memory stick for example). The compressed
Solis distribution size is less than 5 MB and the extracted distribution size is less than 10 MB.
The Solis distribution includes a bin directory where the solis simulator driver, dynamic libraries
and the Solis tools reside; a doc directory with the Solis documentation; an examples directory
with templates used to define physical models for Solis and some useful input files including solar
cells and ultraviolet detectors; an icons directory 1; a work directory where to put simulation
input and results; a config directory where Solis saves user settings.
In the bin directory are included the Solis simulation engine driver, core libraries and four tools:

• The simulation engine driver, soliscomp.exe (Windows) or soliscomp (Linux)

• The graphical device editor, solisdevice.exe (Windows) or solisdevice (Linux)

• The code editor, solisedit.exe (Windows) or solisedit (Linux)

• The data plotter, solisplot.exe (Windows) or solisplot (Linux)

• The scientific calculator, soliscalc.exe (Windows) or soliscalc (Linux)

As already presented in the prolog, these four tools are independent and are not mandatory
to use. The simulator can be used alone, in the command line. The Solis input format is a
completely open and clean text format (cf. section 2.3) and can be created/edited/parsed by
any tool (text editor, scripting language, Bash...). Nonetheless, using the graphical device editor
or the code editor is an efficient/fast and modern way to perform simulations.

To know if a new version is available, click Menu/Help/Check for Update... or visit my
website: http://www.hamady.org
Under Linux, Solis includes also an interactive terminal emulator (solisterm), a standalone ver-
sion of the embedded terminal in SolisEdit.
This terminal emulator is loaded and available to use if the VTE library is installed.
Usually the required VTE library is installed by default, but in some systems it must be installed:
Under CentOS, install vte by typing the following commands:
sudo yum install -y epel-release

sudo yum install vte

Under Ubuntu, install vte by typing the following command: sudo apt-get install libvte9

Under Ubuntu, if you encounter error such as:
error while loading shared libraries: libgtk-x11-2.0.so.0

reinstall the required library by typing in the terminal:
1The icons directory contains files useful to define an application icon and/or custom launcher for Linux

desktop.

http://www.hamady.org/download/solis_windows.zip
http://www.hamady.org/download/solis_linux_64bit.tgz
http://www.hamady.org
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sudo apt-get –reinstall install libgtk2.0-0

Under Ubuntu/Debian 64bit, if you encounter error such as:
failed to load module "canberra-gtk-module"

reinstall the required library by typing in the terminal:
sudo apt install libcanberra-gtk-module libcanberra-gtk3-module

2.2 Solis Command Line Options

The Solis simulator driver, soliscomp.exe under Windows and soliscomp under Linux, is a
command line tool to be executed in a console window. Open your favorite terminal under Linux
or launch cmd.exe under Windows (or simply click the Command Prompt in Start/Accessories)
and launch Solis with the appropriate options. The syntax is as follows:
soliscomp -run infile [-out outfile]

infile is the input filename described in the next section 2.3.
-out outfile is used to specify the output filename where Solis saves the simulation messages.
Examples:
soliscomp -run solarcell.solis

soliscomp -run solarcell.solis -out simulmessages.txt

2.3 Solis Input File Format

2.3.1 Solis Input Syntax

Solis simulates a device structure such as shown in figure 2.1. To describe such a device,
Solis uses a very simple input file format, inspired by the INI format (click to see the Wikipedia
definition of this format). With this text format, Solis input file are simple to generate/handle,
to read and understand. The Solis input file extension is .solis.

The basic syntax of a Solis input is as follows:

# Solis <SL>
# the first line above is mandatory

$thick = 1
$dop = 1E+18

[Device]
Name="PN"
Temperature =300

[Layer1]
Material="GaAs"
Thickness=$thick
Dopant.N=$dop

https://en.wikipedia.org/wiki/INI_file
https://en.wikipedia.org/wiki/INI_file
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Dopant.Type="Acceptor"

[Layer2]
Material="GaAs"
Thickness =10
Dopant.N =1e+16
Dopant.Type="Donor"

[Anode]
Anode.Type="Ohmic"

[Cathode]
Cathode.Type="Ohmic"

[Voltage]
Voltage.Source="Sweep"
Voltage.Start =0
Voltage.End =1
Voltage.Step =0.01
Voltage.Jsup =0

[Light]
Light.Source="AM1.5"

The first line in the Solis input (# Solis <SL>) should be always there. The input
file is composed of sections. Each section contains key=value statements. The key name can
be prefixed with the section name or not. For example, in the [Voltage] section, the source
could be specified as Voltage.Source="Sweep" or Source="Sweep". Each line (or text at the
end of a line) beginning with the hash symbol (#) is treated as a comment and is ignored by the
simulator. In this way, one can document the Solis input code.

Before the first section, one can define variables using the syntax:

$varName=varValue

One variable per line, and each variable name should begin with the $ symbol. Solis includes a
mathematical parser (the one used by SolisCalc, detailed in section 3.4), and the variable value
could be any valid mathematical expression, like in the following example:

$dsig = 0.5
$dop = 1e18 * exp(-1 / $dsig)

More generally, any numerical parameter could be given as a mathematical expression. The
defined variable could be affected to any numerical parameter in any section, as in the following
statement:

Dopant.N=$dop # $dop defined previously
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Figure 2.1: A schematic structure of a device as simulated by Solis.
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2.3.2 Device Section

The first section in the Solis input file is the [Device] section:

[Device]
# Device records
Name="SolarCell" # Device name
Temperature =300 # Operating temperature in Kelvin
Polarization.Scale =0 # Spontaneous/piezoelectric polarization scale

This section contains three keys: the device name (e.g. "GaAs solar cell"); the operating
temperature in Kelvin and the spontaneous/piezoelectric polarization scale for III-N wurtzite
materials. Only the device name is mandatory. If not given, the temperature will be set to
300 K. The polarization scale will be explained in section 2.3.3.6.

2.3.3 Layer Section

The following listing defines the first layer parameters:

[Layer1] # First layer
Label="p-GaAs" # Layer label
Material="GaAs" # Material name
Composition.x =0 # for ternary alloys A(x)B(1-x)C
Bandgap.Bowing =0 # Bandgap bowing for ternary alloys
Affinity.Bowing =0 # Affinity bowing for ternary alloys
Thickness =1 # Layer thickness (micrometers)
Bandgap =1.42 # Bandgap (eV)
Permittivity =12.9 # Dielectric constant (in unity of eps0)
NC=4.7e+17 # Density of states in cond. band (1/cm3)
NV=9e+18 # Density of states in valence band (1/ cm3)
Mobility.N =4000 # Mobility of electrons (cm2/Vs)
Mobility.P =400 # Mobility of holes (cm2/Vs)
Dopant.N =1e+17 # Doping concentration (1/cm3)
Dopant.E =0.045 # Dopant ionization energy (eV)
Dopant.Taun =0.001 # Electron lifetime (seconds)
Dopant.Taup =0.001 # Hole lifetime (seconds)
Dopant.Type="Acceptor" # Type (" Acceptor", "Donor" or "Intrinsic ")

Listing 2.1: First Layer Section: Basic Parameters.

The next layers are defined in the same way, with the layer’s section name incremented:
[Layer1], [Layer2], ..., [Layer9]. Up to nine layers can be defined.

The listing 2.1 defines the basic layer parameters: the Thickness, Bandgap, Permittivity,
density of states in in conduction NC band and in valence band NV, the mobility of electrons
Mobility.N, the mobility of holes Mobility.P, the doping concentration Dopant.N and ionization
energy Dopant.E, the electron lifetime Dopant.Taun, the hole lifetime Dopant.Taun and the
doping type Dopant.Type. Solis uses the incomplete ionization model in all cases.

Solis includes a materials database including GaAs used in this example, as presented in
section 2.6. It is not necessary to enter all parameters. On one hand, Solis uses the default
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value for any parameter not explicitly defined in the layer section and, on the other hand, Solis
saves only parameters with value different from the default one. Only the Thickness and the
Dopant.N and Dopant.Type are mandatory 2. If the Material statement is not defined, Solis
uses monocrystalline silicon as the default material.

The layer section contains also keys defining physical models, as detailed in section 2.4. All
parameters included in these models could be graded.

In addition to the basic layer parameters, one can define many other parameters:

2.3.3.1 Urbach tail

The Urbach parameters to describe disorder in the layer:

[Layer1] # First layer
# ...

Urbach.Enable="Yes" # "Yes" or "No" to enable or disable Urbach
Urbach.EA =0.02 # energy in eV for acceptors
Urbach.ED =0.02 # energy in eV for donors
Urbach.GA =2e+19 # density of states in 1/cm3/eV for acceptors
Urbach.GD =2e+19 # density of states in 1/cm3/eV for donors
Urbach.TaunA =1e-7 # electron lifetime in seconds for acceptors
Urbach.TaupA =1e-7 # hole lifetime in seconds for acceptors
Urbach.TaunD =1e-7 # electron lifetime in seconds for donors
Urbach.TaupD =1e-7 # hole lifetime in seconds for donors

Listing 2.2: First Layer Section: Urbach Parameters.

These parameters are defined in the classical Urbach model [7] that is used to describe the
sub-bandgap absorption in disordered materials such as amorphous silicon or high defect density
III-N alloys. This sub-bandgap absorption can be written as:

α(E) = αuexp

(
E − EG
EA

)
or αuexp

(
E − EG
ED

)
(2.1)

The first term corresponds to the Urbach tail for acceptors and the second one for donors.
α(E) the absorption coefficient ; EA corresponds to the Solis parameter Urbach.EA ; ED corre-
sponds to Urbach.EA ; E is the incident photon energy and EG the bandgap αu the Urbach
absorption parameter calculated by Solis to ensure the continuity of the α(E) at the bandedges.
The Urbach density of states and lifetime are used in the recombination term in the continuity
equations.

2.3.3.2 Refractive Index and Extinction Coefficient

The complex refractive index, with refractive index n and extinction coefficient k, is
included in the layer section as follows:

2In fact, when the user defines a custom model for the doping, as detailed in section 2.4.3, it is not necessary
to set Dopant.N and Dopant.Type since the user-defined model gives these parameters.
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[Layer1] # First layer
# ...

Index.n =3.5 # Refractive index
Index.k =0.1 # Extinction coefficient

# ...
# ...

Listing 2.3: First Layer Section: Refractive Index.

The given Index.n and Index.k are used to calculate the refractive index and extinction
coefficient at a given photon energy E using relation 2.2:

k(E) = ko

(
2EG
E

)(
E − EG
EG

)m
(2.2)

Where EG is the bandgap and ko equal to Index.k given in the listing. Index.k corresponds
then to the extinction coefficient at E = 2 × EG. The parameter m in the equation is equal to
1/2 if the bandgap is direct, and 2 otherwise. In this scheme, k = 0 if E < EG, unless Urbach
tail is considered. User-defined model for the complex index can be set using, e.g., data from
experimental measurements. The definition of custom physical models is detailed in section 2.4.

2.3.3.3 Mobility

The Mobility is defined in the layer section as shown in the following listing:

[Layer1] # First layer
# ...

Mobility.N =1500 # Electron mobility in cm2/Vs
Mobility.P =500 # Hole mobility in cm2/Vs

# ...

Listing 2.4: First Layer Section: Mobility.

A custom mobility model (e.g. Caughey-Thomas) can be defined using the integrated script-
ing language, as detailed in section 2.4.

2.3.3.4 Doping

The Doping is defined in the layer section as shown in the following listing:

[Layer1] # First layer
# ...

Dopant.N =1e16 # Concentration in 1/cm3
Dopant.Nr =1e19 # Reference concentration in 1/cm3
Dopant.Taun =1e-4 # Electron lifetime in seconds
Dopant.Taup =1e-4 # Hole lifetime in seconds
Dopant.Type="Donor" # Dopant type: "Donor" or "Acceptor"

# ...

Listing 2.5: First Layer Section: Doping.
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The reference concentration is used to take into account the variation of the carrier lifetime
with the doping concentration, using the following formula:

τn =
τn0

1 + N
Nr

τp =
τp0

1 + N
Nr

(2.3)

Where N is the doping concentration, τn0 and τp0 correspond to the Solis parameters Dopant.Taun
and Dopant.Taup, and Nr corresponds to Dopant.Nr.

A dopant model can be defined with the possibility to set any doping profile, as detailed in
section 2.4.

2.3.3.5 Traps

In addition to the continuous band tail distribution, using the Urbach model, Solis handles
discrete trap levels in the layer bandgap. Up to five discrete trap levels can be defined. Each
trap is defined as follows:

[Layer1] # First layer
# ...

Trap1.N =1e16 # Trap density in 1/cm3
Trap1.Nr =1e19 # Reference density in 1/cm3
Trap1.E =0.0 # Activation energy (eV) with respect...

# ... to the intrinsic Fermi level
Trap1.Taun =1e-8 # Electron lifetime in seconds
Trap1.Taup =1e-8 # Hole lifetime in seconds
Trap1.Type="Donor" # Trap type: "Donor" or "Acceptor"

Listing 2.6: First Layer Section: Traps.

Adding more traps is done in the same way, with the trap’s number incremented: Trap1, Trap2,
..., Trap5.

The discrete trap parameters are defined in the same way than the dopant parameters in
listing 2.5, except that the trap energy is defined relatively to the intrinsic Fermi level (close to
the mid of the bandgap). The variation of the carrier lifetime with the trap density is defined as
in equation 2.3.

User-defined trap model can be set with any profile, as detailed in section 2.4.

2.3.3.6 Lattice

Solis can include the effect of the spontaneous and piezoelectric polarization for III-N (mainly
GaN, AlN, InN, AlGaN and InGaN) compound semiconductors.

The spontaneous and piezoelectric polarization is included in the Poisson equation (section
1.1, equation 1.1).

The lattice parameters used to define the total polarization are set as follows:
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[Layer1] # First layer
# ...

Lattice.a =0.311 # Lattice a parameter in nm
Lattice.c =0.498 # Lattice c parameter in nm
Lattice.e31 =-0.58 # Piezoelectric coefficient e31 in C/m2
Lattice.e33 =1.55 # Piezoelectric coefficient e33 in C/m2
Lattice.c13 =99 # Elastic coefficient c13 in GPa
Lattice.c33 =389 # Elastic coefficient c33 in GPa
Lattice.Psp =-0.081 # spontaneous polarization coefficient in C/m2

Listing 2.7: First Layer Section: Lattice.

Where Lattice.a and Lattice.c are the lattice parameters; Lattice.e31 and Lattice.e33

the piezoelectric coefficients; Lattice.c13 and Lattice.c33 the elastic coefficients; Psp the
spontaneous polarization.

The total polarization P is the sum of spontaneous Psp and piezoelectric Ppi polarization,
calculated as follows, in the case of c-oriented III-N layers [8]:

Ptotal = Polarization.Scale× (Ppsp + Ppi)

Ppi =
∑
j

eijεj = e33ε3 + e31(ε1 + ε2)

ε3 = −2
c13
c33

(
a− a0
a0

)
; ε1 = ε2 =

a− a0
a0

(2.4)

a are the a-lattice parameter of the strained layer; a0 that of the relaxed layer.
Polarization.Scale is a ponderation coefficient, defined in the [Device] section as follows:

[Device]
# ...

Polarization.Scale =1 # Spontaneous/piezoelectric polarization scale

The Polarization.Scale value varies between −10 and 10. For Polarization.Scale = 0,
there is no spontaneous/piezoelectric polarization at all. For Polarization.Scale = 10 (the
maximum allowed value), the value is ten times higher than the value expected from the lattice
parameters. To invert the polarization, just give a negative Polarization.Scale value. The
Polarization.Scale parameter is useful to study the effect of the spontaneous/piezoelectric
polarization on the device (e.g. solar cell or detector) performances. The lattice and polarization
parameters can be user-defined using custom physical model, as detailed in section 2.4.

2.3.3.7 Mesh

The number of discretization (mesh) points in the layer can be set using:

[Layer1] # First layer
# ...

Mesh.Points =100 # The number of mesh points

Listing 2.8: First Layer Section: Mesh.
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This parameter will be taken into account only if the Mesh key in the Numeric section is set to
"Layer", as explained in section 2.3.7 below. In this way, one can apply a mesh scheme on each
layer to handle devices containing, for example, layers with very different thickness/doping/...

The number of mesh points should be set to a value between 5 and 5000. On the other hand,
the total number of points in the whole device should between 50 and 20000.

2.3.4 Anode and Cathode Sections

Two contacts are defined for a given device: the anode (top contact) and the cathode (bottom
contact). Each contact can be either ohmic or rectifying (Schottky) with a flexibility to define
an intermediate ohmic-Schottky behavior using the barrier height.

The anode is defined as follows:

[Anode] # Anode section
Anode.Type="Ohmic" # Material name
Anode.Phi =0.0 # Barrier height (eV)
Anode.Thickness =0.005 # Thickness in micrometers
Anode.Rn =1e7 # Recombination speed for electrons (m/s)
Anode.Rp =1e7 # Recombination speed for holes (m/s)
Anode.Index.n =2.0 # Refractive index n
Anode.Index.k =0.0 # Extinction coefficient k

Listing 2.9: Anode Section: Parameters.

And the cathode is defined is the same way, with different parameters if necessary:

[Cathode] # Cathode section
Cathode.Type="Ohmic" # Material name
Cathode.Phi =0.0 # Barrier height (eV)
Cathode.Thickness =0.005 # Thickness in micrometers
Cathode.Rn =1e7 # Recombinaison speed for electrons (m/s)
Cathode.Rp =1e7 # Recombinaison speed for holes (m/s)
Cathode.Index.n =2.0 # Refractive index n
Cathode.Index.k =0.0 # Extinction coefficient k

Listing 2.10: Cathode Section: Parameters.

Recombination speed for electrons and holes can be set to model nonideal ohmic contact. The
refractive index n and extinction coefficient k is defined to account for reflection and absorption
in anode and cathode. A custom contact refractive index and extinction coefficient spectra can
be defined (based, for example, on experimental data), as detailed in section 2.4.

2.3.5 Voltage Section

The voltage, applied between anode and cathode, is defined in the following listing:
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[Voltage] # Voltage section
Voltage.Source="Sweep" # "Sweep", "None" or "CustomBias.txt"
Voltage.Start =0.0 # Voltage start value in volts
Voltage.End =1.0 # Voltage end value in volts
Voltage.Step =0.01 # Voltage step value in volts
Voltage.Jinf =-1.0 # Minimal current density in A/cm2
Voltage.Jsup =1.0 # Maximal current density in A/cm2

Listing 2.11: Voltage Section: Parameters.

If the parameter Voltage.Source is set to "None", the simulation will be performed at
equilibrium.
If Voltage.Source is set to "Sweep", the voltage will be increased from Voltage.Start to
Voltage.End with a step equal to the value set in Voltage.Step.
The Voltage.Source can also be set using text file defined by the user. This file should contain
the voltage values (one value per line) in an increasing order. In this way, one can completely
adapt the voltage sweep to a specific device. The custom_voltage.txt file in the examples

directory gives an example of custom voltage source.
Voltage.Jinf and Voltage.Jsup define a range in which the calculated current is con-

strained: simulation stops if the current reach one of those limits. These current constraints
are very useful when simulating devices such as solar cells where the current varies between
the short-circuit value and zero. Then for solar cells one can set Voltage.Jsup to 0.0 and set
Voltage.Jinf to a value larger (in modulus) than the expected short-circuit current in A/cm2,
e.g. Voltage.Jinf=-0.1 for a PN solar cell 3.

2.3.6 Light Section

A light source, as shown in figure 2.1, is defined in the following way:

[Light] # Light section
Light.Source="AM1.5" # "Mono", "AM1.5" or "None"
# The following parameters are optional if Light.Source set to "AM1.5"
Light.Start =0.4 # Light start wavelength in micrometers
Light.End =1.2 # Light end wavelength in micrometers
Light.Step =0.01 # Light step wavelength in micrometers
Light.Flux =1e17 # Light flux in 1/cm2/s

Listing 2.12: Light Section: Parameters.

If Light.Source is set to "AM1.5", Solis uses the standard solar spectrum AM1.5G as defined
in [9] and shown in figure 2.2. This solar spectrum is saved in the file solar_spectrum_am15g.txt
located in the examples directory. In this case, it is not necessary to specify the other parameters.
If these parameters are specified in this case, only the solar spectrum range from Light.Start

to Light.End will be considered.

3for NP solar cell, just invert the values: Voltage.Jinf=0 and Voltage.Jsup=0.1
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Figure 2.2: Standard AM1.5G solar spectrum [9].

Light.Source can also be set to "Mono" to define a monochromatic light at the wavelength
defined by Light.Start (in um) and a flux defined by Light.Flux (in 1/cm2/s).

Set Light.Source to "EQE" to simulate the quantum efficiency spectrum from Light.Start

to Light.End using Light.Step.
If Light.Source is set to "None", no light source is considered in the simulation.
As for voltage, the Light.Source can be set using text file defined by the user. This file

contains the wavelength (in um) and flux (in 1/cm2/s/um) values (two values per line, separated
by tabulation) in an increasing wavelength order. The custom_spectrum.txt file in the examples
directory is an example of such a custom light source.

2.3.7 Numeric Section

Some Solis numerical parameters, mainly the output options, solver method, tolerance, damp-
ing factor, mesh, initial guess, can be defined to meet the user needs.

These parameters can be defined in this section as in listing 2.13.
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"bicgstab" biconjugate gradient stabilized method

"bicgstabl biconjugate gradient stabilized method (l)

"bicgsafe" biconjugate gradient (safety variant) method

"gmres" generalized minimal residual method

"fgmres" flexible generalized minimum residual method

"minres" minimum residual method

"tfqmr" transpose-free quasi-minimal residual method

Table 2.1: The iterative linear solvers used by Solis.

[Numeric] # Numeric section
Numeric.Verbose="Yes" # Print out all messages: "Yes", "No"
Numeric.SaveFull="No" # Save all output data: "Yes", "No"
Numeric.Method="Gummel" # Set the method: "Newton", "Gummel"
Numeric.InnermostSolver="tfqmr" # Set the innermost solver
Numeric.Tol =1e-4 # Tolerance to reach
Numeric.Damp =0.2 # Damping factor
Numeric.Mesh="Layer" # Mesh: "Layer", "Uniform" or text file
Numeric.Points =200 # The device mesh number of points
Numeric.Guess="custom_guess.txt" # The user -defined initial guess

Listing 2.13: Numeric Section: Parameters.

The Numeric.Verbose parameter can be set to "No" to print out only core messages, or to
"Yes" to print out all simulator messages.

If Numeric.SaveFull is set to "No", only current-voltage, capacitance-voltage or spectral
response are saved with the equilibrium and last calculated spatial distribution of potential,
field, carrier concentrations, recombination rates, band diagram, etc. If set to "Yes", all the
output data are saved for every voltage and wavelength, increasing accordingly the disk usage
and slowing down the simulation.

With Numeric.Method, one can set the algorithm to "Gummel" or "Newton". These methods
are previously presented in section 1.1. Numeric.InnermostSolver set the innermost solver for
the linear system arisen from the discretization of the drift-diffusion system, as explained is
section 1.1. Numeric.InnermostSolver can be set to one of the solvers listed in table 2.1.

A comprehensive description and implementation of these iterative linear solvers can be found
in [10, 11]. Solis uses tfqmr by default.

The Numeric.Tol parameter is set to the solver tolerance. Smaller is Numeric.Tol, the more
precise is the solution and slower is the simulation, obviously. In fact, it is usually unnecessary
to set the tolerance to a small value (less than 10−5) since when the convergence is achieved, the
obtained error is far smaller than the given tolerance. Solis can automatically change the given
tolerance to seek for a faster convergence.
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The Numeric.Damp parameter is set to the internal damping factor used to ensure convergence
of the Gummel or Newton methods, as presented in section 1.1. A value of 0.2 means that the
maximum allowed variation of potential and Fermi levels is 1

0.2 = 5 in unit of kT. This value
plays an important role in the convergence and can be automatically adapted by Solis to enhance
convergence in some situations. Usually it is not necessary to manually set it, except when the
convergence fails.

If Numeric.Mesh is set to "Uniform", a uniform discretization will be applied to the whole
device, using Numeric.Points that is the mesh number of points to set from 50 to 20000.
The uniform mesh is the mesh scheme applied to devices where the thicknesses (and/or other
parameters such as doping) are comparable. When the device contains layers with very different
thicknesses (such as solar cell with a very thin highly doped emitter and thick absorber), the
uniform mesh is no longer adapted since it implies a huge increase in the number of points (to
have sufficient points in the thinnest layer) that slows down the simulation. In this case, set
Numeric.Mesh to "Layer" and, in each layer section, set Mesh.Points to a value adapted to
the layer thickness. User can also define a custom mesh scheme, by setting Numeric.Mesh to a
text file. This file should contain the position values (in micrometers, one value per line) in an
increasing order from 0 to the total thickness of the device. Using a custom mesh allows the user
to define an adaptive discretization scheme with, for example, small step at the interfaces (or in
highly doped regions, etc.) and larger step elsewhere.

User can also give a custom initial guess to the Solis engine. Solis internally guess the initial
potential profile at equilibrium to give a starting solution to the solver to ensure and speed
up convergence in most cases. The internal Solis procedure can be replaced if the user set the
Numeric.Guess parameter to a text file containing the potential and Fermi levels (for electrons
and holes). This file should contain four values per line, separated by tabulation: position in
micrometers, potential in V, Fermi levels for electrons and holes in eV. The position, in increasing
order, varies from from 0 to the total thickness of the device. Listing 2.14 gives an example of
such a file. The initial guess is given at equilibrium and the Fermi levels can be set to zero (Solis
uses the Fermi level at equilibrium as the energy origin). Giving a good initial guess speed up
the simulation, particularly for complex optimization procedure.

# Initial guess for Solis
# z(um) V(V) Efn(eV) Efp(eV)
0 -0.306262653854 0 0
0.01 -0.306262653854 0 0
0.02 -0.30625226779 0 0
0.03 -0.306231438238 0 0
# ....
# ....
1.97 0.30629510655 0 0
1.98 0.306308626896 0 0
2 0.306308626896 0 0

Listing 2.14: Example of initial guess.
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One can use a solution previously found by Solis as a starting initial guess to simulate a
similar structure. A strategy well suited to a particular device can be found and implemented
using, for example, the embedded Lua scripting engine or any other language.

2.3.8 Command Section

This section contains some Solis general parameters:

[Command] # Command section
Command.OutDir="/tmp/" # The output directory

# where Solis saves the output data
Command.OutDirDate="No" # Append date to the output directory
Command.Plot="Yes" # Set to "Yes" to plot output data

# using the SolisPlot tool

Listing 2.15: Command Section: Parameters.

With Command.OutDir, one can set an output directory where Solis saves output data. If set
to nothing ("") or not defined at all, Solis create, in the working directory (where the current
input file is), an output directory named simulout and a subdirectory using the input name.
Section 2.5 gives details about the Solis output files. If the Command.OutDirDate is set to "Yes",
the current date and time is used for the output directory name, to preserve output files between
simulations of the same device.

One can set Command.Plot to "Yes" to plot output data (current-voltage, capacitance-voltage
or spectral response characteristic, spatial distribution of potential, field, carrier concentrations,
recombination rates, band diagram, etc.) using the SolisPlot tool.

2.4 Define Physical Models using the Lua programming language

One of the strengths of Solis is the use of an embedded scripting language, letting the user
customize/define the physical models and input parameters. This flexibility is of great im-
portance in order to simulate precisely and realistically semiconductor devices. The Lua pro-
gramming language was choosen mainly because of his simplicity, lightness, small footprint and
speed. A very good tutorial, written by one of the main Lua developers, can be found here:
https://www.lua.org/pil/contents.html.

Model templates are integrated in the Solis code editor and included in the examples direc-
tory. These templates define the:

• bandgap model in a layer section ([Layer1] to [Layer9])

• permittivity model in a layer section

• doping model in a layer section

• trap model in a layer section

https://www.lua.org/pil/contents.html
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• mobility model in a layer section

• recombination model in a layer section

• lattice model in a layer section

• refractive index n and extinction coefficient k model in a layer, anode and cathode sections

Each model is defined by a Lua function with a given mandatory name and list of arguments.
The function prototype (name, list of arguments and returned values) is fixed but the function
content is, of course, completely user-defined. All functions related to a given device could be
defined in one Lua file per layer or separated, with one file per function. It depends only on the
user preference.

2.4.1 Bandgap Model

This model is defined as in the listing 2.1 and partially reproduced below:

[Layer1] # First layer
# ...
# ...

Bandgap.Model="bandgap.lua" # Bandgap model using Lua
# ...
# ...

Listing 2.16: Bandgap Model Definition in the Layer Section.

bandgap.lua is the Lua source file containing the model function, always named sol_bandgap.
The following code gives an example of such a Lua function:

function sol_bandgap(position , thickness , temperature , concentration)
eg = 1.12 -- bandgap (eV)
chi = 4.17 -- affinity (eV)
nc = 2.8e19 -- density of states in conduction band in 1/cm3
nv = 1.04e19 -- density of states in valence band in 1/cm3
graded = false
-- ...
-- ...
return eg, chi , nc, nv, graded , true

end

Listing 2.17: Bandgap Model Lua Function.

The sol_bandgap takes as input the position (in micrometers) in the layer (from 0 to the layer
thickness); the layer thickness (in micrometers); the temperature in Kelvin and the doping
concentration (in cm−3). The function must return four parameters: the bandgap value (in
eV); the affinity (in eV); the density of states respectively in conduction and valence band (in
cm−3). All these parameters can be graded i.e. depending on position inside the layer, giving
a very flexible way to study heterostructures with non-homogeneous properties. Only these
four parameters are always returned. The temperature and doping concentration given as input
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parameters permit implementing physical models such as bandgap narrowing, Burstein-Moss
shift and/or Varshni relation.

If the parameters are graded, the function must return the fifth parameter, a boolean, set
to true. It is important to return this boolean to avoid unnecessary calls to the function and
then speed up the simulation. By default, if the graded parameter is not returned, the layer is
considered to be not graded (thus homogeneous) and the function will not be called again for the
next position in the layer. The graded parameter is always returned as the penultimate parameter
for all Solis Lua functions.

The last (sixth) returned parameter is the boolean status: if false, the simulator will stop
the calculation. This value is usually set to true, but can be set to false to abort the simulation
process in some circumstances. The status is always returned as the last parameter for all Solis
Lua functions.

2.4.2 Permittivity Model

As for the bandgap, the permittivity model is defined as below:

[Layer1] # First layer
# ...

Permittivity.Model="perm.lua" # Permittivity model using Lua

Listing 2.18: Permittivity Model Definition in the Layer Section.

In this Solis input, perm.lua is the Lua source file containing the model function, always
named sol_permittivity, as given in the following code:

function sol_permittivity(position , thickness , temperature)
eps = 11.8 -- relative permittivity
graded = false
-- ...
return eps , graded , true

end

Listing 2.19: Permittivity Model Lua Function.

The sol_permittivity takes as input the position and layer thickness (in micrometers) and the
temperature (in Kelvin). It returns the relative permittivity and, as for the bandgap function
presented in 2.4.1, the (optional) graded and status parameters. Note that if the bandgap
and related parameters are graded, the permittivity is usually graded also to keep the physical
consistency.

2.4.3 Doping Model

Solis can handle custom doping profile. With the Lua model, one can code any varying
doping parameters in a given layer and not only a constant doping concentration as usually done
in the semiconductor device simulators. In solar cells, for example, one can study the effect of a
doping gradient in the absorber.
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The dopant model is defined in the Solis input as follows:

[Layer1] # First layer
# ...

Dopant.Model="doping.lua" # Dopant model using Lua

Listing 2.20: Doping Model Definition in the Layer Section.

doping.lua is the Lua source file containing the dopant model function, always named
sol_doping, as given in the following code:

function sol_doping(position , thickness)
Na = 0 -- acceptor density (1/cm3)
Nd = 1e16 -- donor density (1/cm3)
Nr = 1e19 -- reference density (1/cm3)
Taun = 1e-6 -- electron lifetime (seconds)
Taup = 1e-6 -- hole lifetime (seconds)
E = 0 -- activation energy (eV)
F = 1 -- degeneracy factor
graded = false
-- ...
return Na, Nd , Nr, Taun , Taup , E, F, graded , true

end

Listing 2.21: Doping Model Lua Function.

The sol_doping takes as input the position in the layer in micrometers, the layer thickness, and
returns the doping parameters: acceptor density (in cm−3), donor density (in cm−3), reference
density (in cm−3), electron lifetime (in s), hole lifetime (in s), activation energy (in eV) and
degeneracy factor. These parameters are already described in 2.3.3.4. The last two returned
parameters are the graded and status parameters, as already defined in 2.4.1.

The following code gives an example on how to define a Gaussian p-doping profile in a layer
with a background n-doping:

function sol_doping(position , thickness)
Na = 1e18 -- acceptor density at the layer surface (1/ cm3)
Nd = 1e16 -- background donor density (1/ cm3)
Nr = 1e19 -- reference density (1/cm3)
Taun = 1e-6 -- electron lifetime (seconds)
Taup = 1e-6 -- hole lifetime (seconds)
E = 0 -- activation energy (eV)
F = 1 -- degeneracy factor
graded = true -- set graded to true in this case

Na = Na * math.exp(-position * position / 0.25)

return Na, Nd , Nr, Taun , Taup , E, F, graded , true
end

Listing 2.22: Doping Model Lua Function: Example.
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One can also give the simulator an experimental doping profile as measured, e.g., by the C-V
(capacitance-voltage) technique.

2.4.4 Trap Model

As for doping, Solis can handle custom trap parameters to simulate a spatially nonuniform
trap distribution. The trap model is defined in the Solis input as follows:

[Layer1] # First layer
# ...

Trap.Count =1 # The total number of traps
Trap.Model="trap.lua" # Trap model using Lua

# ...

Listing 2.23: Trap Model Definition in the Layer Section.

The Trap.Count parameter is mandatory when using Lua to define traps. It is the total number
of traps (between 1 and 5).

trap.lua is the Lua source file containing the trap model function, named sol_trap, with
the following prototype:

function sol_trap(number , position , thickness)
Na = 1e15 -- density for acceptor -like trap (1/ cm3)
Nd = 0 -- density for donor -like trap (1/cm3)
Nr = 1e19 -- reference density (1/cm3)
Taun = 1e-8 -- electron lifetime (seconds)
Taup = 1e-8 -- hole lifetime (seconds)
E = 0 -- trap energy relatively to Ei (eV)
F = 1 -- degeneracy factor
graded = false
-- ...
-- ...
return Na, Nd , Nr, Taun , Taup , E, F, graded , true

end

Listing 2.24: Trap Model Lua Function.

The sol_trap takes as input number, the trap number (from 1 to N where N is the total number
of traps in the layer), the position and layer thickness in micrometers.

The function returns the trap parameters: acceptor density, donor density, reference density,
electron lifetime, hole lifetime, activation energy, and degeneracy factor. These parameters are
already described in 2.3.3.5. The fact that the activation energy is defined relatively to the
intrinsic Fermi level. The last two returned parameters are the graded and status parameters,
as already defined in 2.4.1.

In the following example, one trap is defined with an exponentially decreasing density:
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function sol_trap(number , position , thickness)
Na = 1e17 -- density for acceptor -like trap (1/ cm3)
Nd = 0 -- density for donor -like trap (1/cm3)
Nr = 1e19 -- reference density (1/cm3)
Taun = 1e-8 -- electron lifetime (seconds)
Taup = 1e-8 -- hole lifetime (seconds)
E = 0 -- trap energy relatively to Ei (eV)
F = 1 -- degeneracy factor
graded = true

Na = Na * math.exp(-position / 0.5)

return Na, Nd , Nr, Taun , Taup , E, F, graded , true
end

Listing 2.25: Trap Model Lua Function: Example.

2.4.5 Mobility Model

The mobility model is defined in the Solis input as follows:

[Layer1] # First layer
# ...

Mobility.Model="mobility.lua" # Mobility model using Lua

# ...

Listing 2.26: Mobility Model Definition in the Layer Section.

mobility.lua is the Lua source file containing the mobility model function sol_mobility, de-
fined as follows:

function sol_mobility(position , thickness , temperature , concentration)
mun = 1500 -- electron mobility in cm2/Vs
mup = 500 -- hole mobility in cm2/Vs
graded = false
-- ...
-- ...
return mun , mup , graded , true

end

Listing 2.27: Mobility Model Lua Function.

The sol_mobility takes as input the position (in micrometers) in the layer; the layer thick-
ness (in micrometers); the temperature in Kelvin and the doping concentration (in cm−3).

The function returns the electrons and holes mobility. The last two returned parameters are
the graded and status parameters, as already defined in 2.4.1.

Models such as Caughey-Thomas can be easily implemented in sol_mobility.
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2.4.6 Recombination Model

The recombination parameters, used by Solis to implement the Auger, direct and Shockley-
Read-Hall mechanisms, can be user-defined in the Solis input as follows:

[Layer1] # First layer
# ...

Recombination.Model="recombination.lua" # Recombination model using Lua

# ...

Listing 2.28: Recombination Model Definition in the Layer Section.

recombination.lua is the Lua source file containing sol_recombination, the recombination
function, defined as follows:

function sol_recombination(position , thickness)
Beta = 1.1e -14 -- Radiative recombination coefficient (cm3/s)
Cn = 8.3e -32 -- Auger recombination constant for electrons (cm6/s)
Cp = 1.8e -31 -- Auger recombination constant for holes (cm6/s)
Taun = 1e-7 -- Electron lifetime (seconds)
Taup = 1e-7 -- Hole lifetime (seconds)
graded = false
--
--
return Beta , Cn , Cp, Taun , Taup , graded , true

end

Listing 2.29: Recombination Model Lua Function.

The sol_recombination takes as input the position and the layer thickness (in microme-
ters). It returns the radiative (direct) recombination coefficient (in cm3/s); Auger recombination
constants (in cm6/s); electron and hole lifetime (in s). The last two returned parameters are the
graded and status parameters, as already defined in 2.4.1.

2.4.7 Lattice Model

The lattice parameters can be defined in the layer section as follows:

[Layer1] # First layer
# ...

Lattice.Model="lattice.lua" # Lattice model using Lua

# ...

Listing 2.30: Lattice Model Definition in the Layer Section.

lattice.lua is the Lua source file containing the lattice function sol_lattice, defined as fol-
lows:
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function sol_lattice(position , thickness)
a = 0.3189 -- Lattice a parameter (nm)
e31 = -0.34 -- Piezoelectric parameter (C/m2)
e33 = 0.67 -- Piezoelectric parameter (C/m2)
c13 = 100 -- Elastic parameter (GPa)
c33 = 392 -- Elastic parameter (GPa)
Psp = -0.03 -- Spontaneous polarization (C/m2)
graded = false
--
--
return a, e31 , e33 , c13 , c33 , Psp , graded , true

end

Listing 2.31: Lattice Model Lua Function.

The sol_lattice takes as input the position and the layer thickness (in micrometers). It
returns the a-lattice, piezoelectric and elastic, spontaneous polarization parameters. These pa-
rameters are already presented in section 2.3.3.6. The last two returned parameters are the
graded and status parameters, as already defined in 2.4.1.

2.4.8 Refractive Index and Extinction Coefficient Model

The refractive index n and the extinction coefficient k can be defined in Lua to reflect the
user custom data.

The refractive index model is defined in the Solis input as follows:

[Layer1] # First layer
# ...

Index.Model="index.lua" # Refractive index model using Lua
# ...

Listing 2.32: Refractive Index Model Definition in the Layer Section.

index.lua is the Lua source file containing the refractive index model function, always named
sol_index, with the following prototype:

function sol_index(position , thickness , bandgap , lambda)
n = 1
k = 0
graded = false
-- ...
return n, k, graded , true

end

Listing 2.33: Refractive Index Model Lua Function.

The sol_index input parameters are the position and the layer thickness (in micrometers), the
bandgap (in eV) and the light wavelength (in micrometers). It returns the refractive index n

and the extinction coefficient k. The last two returned parameters are the graded and status
parameters, as already defined in 2.4.1.
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2.5 Solis Output Files

As specified in 2.3.8, one can set Command.OutDir parameter to an output directory where
Solis saves the simulation results, and set Command.OutDirDate to "Yes" to use the current date
and time for the output directory name.

By default, Solis create, in the working directory (where the current input file is located), an
output directory named simulout and a subdirectory using the input file name and stores the
following files:

• simuldevice.txt contains a synthetic description of the simulated device as in the follow-
ing example:

# Solis <DE>
# The above first line is mandatory
#
# c-Si Solar Cell
#
Device ’c-Si Solar Cell’: 2 layers:

Layer1:
t = 1 ; NLx = 1e+020 ; Eg = 1.12 ; un = 500 ; up = 500 ; N

Layer2:
t = 200 ; NLx = 1e+017 ; Eg = 1.12 ; un = 500 ; up = 500 ; P

• simulog.txt contains simulator internal messages for debugging and testing purposes.

• simulout_jv.txt contains the current-voltage characteristic, if any. Its content looks like:

# Solis <JV>
# The above first line is mandatory
#
# c-Si Solar Cell
#
# Voltage = 0 V ; Current = 0.0115406 A/cm2 ;
#
# Voltage(V) J(A/cm2)
#
-0.69 -0.0161024
-0.68 -0.00206067
-0.67 0.00749823
-0.66 0.0140025
-0.65 0.0184273
-0.64 0.021437
#...

The voltage and current values are separated with a tabulation. Similarly, simulout_cv.txt
contains the capacitance-voltage characteristic.
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• simulout_qw.txt contains the external and internal quantum efficiency spectra, if any. Its
content looks like:

# Solis <QW>
# The above first line is mandatory
#
# GaN Detector
#
# Voltage = 0 V ; Current = -2.89747e-010 A/cm2 ;
#
# Wavelength(um) EQE IQE
#
0.202 0.624345 0.624345
0.204 0.63732 0.63732
0.206 0.650023 0.650023
0.208 0.662497 0.662497
0.21 0.674743 0.674743
0.212 0.686753 0.686753
0.214 0.698521 0.698521
0.216 0.710042 0.710042
0.218 0.721311 0.721311
0.22 0.732321 0.732321
0.222 0.743071 0.743071
#...

The wavelength and efficiencies values are separated with a tabulation.

• simulout_dist_NNN.txt files, where NNN is a number, contain, for each voltage (if current-
voltage characteristic) or wavelength (if quantum efficiency spectra), the spatial distribu-
tion of potential, electric field, Fermi levels, conduction and valence band, carrier concentra-
tion, doping and traps concentration, currents (electrons, holes and total), photogeneration
and recombination (Auger, direct and SRH). These files are not saved for every voltage
(or wavelength) if the parameter Numeric.SaveFull is set to "No". In this latter case,
those file are saved only at equilibrium (simulout_dist_001.txt) and for the last applied
voltage (or wavelength).

• Other files such as simulplot.txt are used by the Solis tools.

Alongside with the simulation results, Solis saves also the simulation input simulinput.solis
and related Lua models, if any, in the output directory. This permits to keep the input code and
models used to produce the results with the results, for easier analysis and archiving.

2.6 Materials Parameters

Solis includes a materials database with a set of the most used semiconductors, particularly
common in photovoltaics and optoelectronics.
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All the materials properties are extracted from published experimental data and are consid-
ered to be highly reliable. The Madelung’s handbook is one of the main references in this matter
[12].

Table 2.2 gives the main parameters of the included semiconductors. The other parameters,
recombination (Auger, direct, SRH), Urbach, Bandgap narrowing, refractive index and extinction
coefficient spectra, mobility... are taken from well-established experimental data [13, 12, 14, 15].

In addition, Solis includes alloys such as SixGe1−x, InxGa1−xAs, InxGa1−xP, AlxGa1−xAs,
AlxGa1−xN, InxGa1−xN. The composition x, the bandgap bowing and the affinity bowing for
these alloys are defined in the corresponding layer section, as shown in 2.3.3: Composition.x,
Bandgap.Bowing, Affinity.Bowing. The alloy parameters are deduced from the two binaries
(or elements for SixGe1−x) using the Vegard law (modified to include the bandgap and affinity
bowing factors).



Chapter 2. Getting Started with Solis 37

EG(eV ) χ(eV ) NC(cm−3) NV (cm−3) εr β(cm3/s)

Ge 0.66 4.0 1019 5 × 1018 16.2 6.41 × 10−14

Si 1.12 4.17 2.8 × 1019 1.04 × 1019 11.8 1.1 × 10−14

a− Si 1.8 3.9 2 × 1020 2 × 1020 11.9 1.1 × 10−14

GaAs 1.42 4.07 4.7 × 1017 9 × 1018 12.9 7.2 × 10−10

InAs 0.354 4.9 8.7 × 1016 6.6 × 1018 15.15 10−14

InP 1.344 4.38 5.7 × 1017 1.1 × 1019 12.5 10−14

InSb 0.17 4.59 4.2 × 1016 7.3 × 1018 16.8 5 × 10−11

GaSb 0.726 4.06 2.1 × 1017 1.8 × 1019 12.5 10−10

C (Diamond) 5.5 7.2 1020 1019 5.5 10−10

AlN 6.2 2.26 6.3 × 1018 4.8 × 1020 9.14 5 × 10−11

GaN 3.4 4.1 1.2 × 1018 4.1 × 1019 8.9 1.1 × 10−8

InN 0.7 5.26 9 × 1017 5.3 × 1019 15.3 2 × 10−10

6H − SiC 3.0 3.4 9 × 1018 2.5 × 1019 9.66 1.5 × 10−12

CIGS 1.15 4.2 2.2 × 1018 1.8 × 1019 13.4 10−12

CZTS 1.5 4.5 2.1 × 1018 8.9 × 1018 6.5 10−12

CdS 2.42 4.2 1.8 × 1019 2.4 × 1018 9 10−12

In2S3 2.9 4.3 2.2 × 1018 1.8 × 1019 13.5 10−12

CdTe 1.47 4.4 2.2 × 1018 1.8 × 1019 10.2 10−12

ZnO 3.3 4.4 2.2 × 1018 1.8 × 1019 9 10−12

Table 2.2: Basic parameters of semiconductors included in the Solis database. EG is the bandgap,
χ the electronic affinity, NC and NV the density of states in conduction and valence band respec-
tively, εr the relative permittivity, and β the direct recombination parameter. The experimental
data are taken from [13, 12, 14, 15].
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Figure 3.1: SolisEdit Screenshot.

Four independent tools are distributed with Solis:

• A code editor, solisedit.exe (or solisedit under Linux).

• A graphical device editor, solisdevice.exe (or solisdevice under Linux).

• A data plotter, solisplot.exe (or solisplot under Linux).

• An scientific calculator, soliscalc.exe (or soliscalc under Linux).

In addition, Solis includes an interactive terminal emulator (solisterm, only under Linux), a
standalone version of the embedded terminal in SolisEdit.

To know if a new version is available, click Menu/Help/Check for Update... or visit my
website: http://www.hamady.org

3.1 Code Editor

The Solis code editor, SolisEdit, offers all functionality found in modern editors such as
syntax highlighting, autocompletion, markers, indentation control, find/replace, file explorer...
and is fully customizable (screenshot in figure 3.1).

SolisEdit can be used to edit the Solis input files (with extension .solis) and model files
(with extension .lua) and, in addition, it supports a set of languages used by scientists and
engineers such as C/C++, Bash, Python, Octave, Fortran, LATEX1 and Makefile. The language

1This manual was composed in LATEXusing SolisEdit.

http://www.hamady.org
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is automatically selected based on the file extension.

SolisEdit integrates a File Explorer to work easily with files, that can be set to show only
(filter) some files based on their extension (right-click the root directory and select the corre-
sponding filter).

SolisEdit includes a system of coloured Markers, shown in the margins, to show in realtime
the modified/saved sections of the current documents. The Markers can be reset at any time by
selecting Edit/Remove Markers menu.
One particular marker is the bookmark, used to mark a specific line in the code for easier navi-
gation.

The classic Search/Replace functionality are included in SolisEdit: Search menu.
Almost every aspect of the SolisEdit user interface can be customized: Options menu.

With SolisEdit, one can configure specific tool, such as a compiler or a Bash script, to run for
a known file type (Solis and Lua of course, but also C, Python, LATEX, etc.). To configure a tool,
select Tools/Compiler menu and type the command to use to build/compile the corresponding
file type. For example, for Solis, the command is solis -run %s.solis where %s will be replaced
by the filename. It is useful to call a batch file (under Windows) or bash script (under Linux)
to build a specific file. This can be done in the following way:

• For Windows, one can create a batch file (named build.bat for example), put the com-
mand in this file and add the batch name build.bat in the Tools/Compiler dialog after
selecting the corresponding file type (example: LATEX). The following example gives a typ-
ical build.bat content for building LATEXdocument under Windows using MiKTeX and
the Sumatra PDF viewer:

@echo off
@del /f /q myreport.pdf >nul 2>&1
latexmk -pdf -pvc - -halt -on-error myreport.tex
if %errorlevel% equ 0 (

start "" "SumatraPDF.exe" myreport.pdf
) else (exit /b 1)

Listing 3.1: build.bat file to compile LATEXdocument under Windows.

• For Linux, similarly you can create a Bash file (named build.sh for example), put the
command in this file and add ./build.sh in the Tools/Compiler dialog after selecting the
corresponding file type (example: LATEX).

• For Python (for both Windows or Linux), just put a command like this (replace with your
installed Python interpreter):
python –u %s.py
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Figure 3.2: SolisDevice Screenshot.

In the Tools/Compiler dialog, one can check the Redirect standard output option to let
SolisEdit to print out all the text generated by the tool to the Output Window. If this op-
tion is unchecked, SolisEdit will launch a command window and run the tool inside it. In this
latter case, one can check the Close when restart option to close the previous command window
before starting a new one. For the Solis simulator it is better to check the Redirect standard
output option (it is checked, by default) to benefit from functionality such as syntax coloring.
Under Linux, SolisEdit includes an embedded terminal emulator. This terminal emulator is
loaded and available to use if the VTE library is installed. Usually the required VTE library is
installed by default, but in some systems (CentOS 7 for example), it must be installed as follows
(for CentOS):
sudo yum install -y epel-release

sudo yum install vte

3.2 Graphical Device Editor

SolisDevice is the Solis graphical device editor to build graphically the device to simulate.
It offers a very easy way to perform simulations with a simple and functional user interface
(screenshot in figure 3.2). It generates the same input file than entered with SolisEdit. An
input graphically created with SolisDevice can be edited with SolisEdit and vice-versa.

SolisDevice functionality are accessible with the menu, toolbar or by right-clicking or move
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Figure 3.3: SolisDevice: Parameters Dialog.

Figure 3.4: SolisDevice: Doping Dialog.

(e.g. resizing a layer).

With SolisDevice one can add/move/resize/delete a layer and set the material param-
eters: Device menu or the linked toolbar buttons. In the layer parameters dialog (shown by
double-clicking the layer or pressing the Parameters button), one can enter the semiconductor
material properties: bandgap, affinity, permittivity, direct, Auger and SRH recombination, etc.

The layer material can be set using the integrated Solis database: Device/Material... menu.
In this dialog, one can also select Lua model files for bandgap and permittivity.

The layer doping parameters can be set using the corresponding dialog (figure 3.4) shown
by pressing the Doping... button. These parameters are already presented in section 2.3.3.4 and
correspond to the dopant type and concentration, the reference concentration, the electron and
hole lifetime. The doping Lua model file can also be selected in this dialog (refer to section 2.4
for detail in implementing Lua models for Solis).

Traps can be added/deleted/modified using the corresponding dialog shown by selecting the
Device/Traps... menu (figure 3.5). As for doping, these parameters are already presented in
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Figure 3.5: SolisDevice: Traps Dialog.

Figure 3.6: SolisDevice: Urbach Tail Dialog.

section 2.3.3.5 and correspond to the defect type and concentration, the reference concentration,
the activation energy, the electron and hole lifetime, trap degeneracy. A Lua model file for traps
can also be selected in this dialog, as detailed in section 2.4.

Urbach parameters, as defined is 2.3.3.1, can be set using the dialog shown by selecting the
Device/Urbach Tail... menu (figure 3.6).

Mobility parameters defined is 2.3.3.3 are set in the dialog shown by selecting the Device/-
Mobility... menu (figure 3.7). The mobility Lua model file can also be selected in this dialog by
pressing the Model... button.

Figure 3.7: SolisDevice: Mobility Dialog.
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Figure 3.8: SolisDevice: Refractive Index and Extinction Coefficient Dialog.

Figure 3.9: SolisDevice: Anode and Cathode Dialog.

Refractive Index and Extinction Coefficient are defined in the dialog shown by selecting
the Device/Index... menu (figure 3.8). The Lua model file for refractive index and extinction
coefficient spectra can also be selected in this dialog by pressing the Model... button.

Anode and Cathode parameters are defined in the dialog shown by selecting the Device/-
Contacts... menu (figure 3.9). To define the Lua model file for the anode and cathode refractive
index and extinction coefficient spectra, press the Model... button.

To define theVoltage and Light parameters, use the corresponding dialog shown by selecting
the Device/Voltage... or the Device/Light... menu (figure 3.10). To set custom voltage sweep,
press File... in the voltage dialog. The voltage sweep file format was already defined in section
2.3.5. Similarly, one can define custom light spectrum by selecting File... in the light dialog (for
details on the custom spectrum format, refer to section 2.3.6).

Figure 3.10: SolisDevice: Voltage and Light Dialog.
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Figure 3.11: SolisPlot Screenshot.

3.3 Data Plotter

The Solis data plotter, SolisPlot (screenshot in figure 3.11), is usually not used as a
standalone application. It is rather used by the simulator driver soliscomp, the code editor
SolisEdit or the graphical device editor SolisDevice to plot the simulation results. But it can
be used alone to directly plot simulation results or other data. To do so, just launch SolisPlot,
browse to the simulation output directory and select the corresponding file. With SolisPlot,
one can control every aspect of the plot curves, axes, scale, add lines, etc. The plot can be
saved in the SVG format (and PDF format under Linux). This vectorial format retains high
graphic quality and can be directly used in reports/papers or converted to PDF format to use
in a LATEXdocument for example.

3.4 Solis Scientific Calculator

The Solis scientific calculator, SolisCalc, is an advanced mathematical expression-based
calculator (screenshot in figure 3.12). It supports the most common and useful functions. It’s
easy to use: to evaluate an expression, simply write it, using operators ( + - * / ˆ ), parenthesis
and mathematical functions and press ENTER (or F12). One can also use the numeric keypad
to enter numbers and operators. One can set variables (with any non-reserved name), using
fundamental constants, etc. SolisCalc menu gives an easy way to use the software functionality.

The following mathematical functions are supported:

exp(x) # exponential
ln(x) # natural logarithm
log(x) # decimal logarithm
pow(x,n) # xn
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Figure 3.12: SolisCalc Screenshot.

sin(x) # sine
cos(x) # cosine
tan(x) # tangent
asin(x) # arc sine
acos(x) # arc cosine
atan(x) # arc tangent
sinh(x) # hyperbolic sine
cosh(x) # hyperbolic cosine
tanh(x) # hyperbolic tangent
abs(x) # absolute value
sqrt(x) # square root
ceil(x) # ceiling , the smallest integer not less than x
floor(x) # floor , the largest integer not greater than x
fmod(x,y) # x modulo y
erf(x) # error function
jn(n,x) # Bessel function of x of the first kind of order n
yn(n,x) # Bessel function of x of the second kind of order n
bern(x) # Bernoulli function: x / (exp(x) - 1)
gauss(x,m,s) # Gauss function: exp((x - m)^2 / 2s^2)
lorentz(x,m,s) # Lorentz function: s / ((x - m)^2 + s^2)
hypot(x,y) # hypotenuse , sqrt(x^2 + y^2)
min(x,y) # smallest value of x and y
max(x,y) # largest value of x and y
rand(x) # random number between 0 and 1
time() # elapsed time in seconds since January 1, 1970
sign(x) # sign of x (-1 if x < 0, +1 if x > 0 and 0 if x = 0)
hypot(x,y) # sqrt(x^2+y^2)
erf(x) # error function
gammaln(x) # ln(gamma(x))
beta(x) # beta(x)
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trunc(x) # nearest integer
round(x) # nearest integer , rounding
rint(x) # rounds the floating -point to an integer

Listing 3.2: Mathematical Functions in SolisCalc.

Constants:

pi # 3.14169...
_q # electron charge in C
_m # electron mass in kg
_k # Boltzmann constant in J / K
_h # Planck constant in m2 kg / s
_c # speed of light in vacuum in m / s
_e # vacuum permittivity in F / m
_n # Avogadro constant

Listing 3.3: Constants in SolisCalc.

Commands:

cls # clear the console
format:real # set the numerical output format to real
format:int # set the numerical output format to integer (10-base)
format:dec # set the numerical output format to integer (10-base)
format:bin # set the numerical output format to integer (2-base)
format:oct # set the numerical output format to integer (8-base)
format:hex # set the numerical output format to integer (16-base)
format? # print out the current numerical format
unit:degree # set the angle unit to degree
unit:radian # set the angle unit to radian
unit? # print out the angle unit

Listing 3.4: Commands in SolisCalc.

You can create variables (with any non-reserved name):

a = 6*2

The last expression evaluation can be accessed using the internal variable ans:

ans

Append a semicolon (;) to the expression to suppress the output:

a = 6*2;

A comment can be added at the end of an expression, using # :

y=sin(pi/4) # comment

Previous calculated expressions can be reused by pressing up or down arrows.

SolisCalc can be executed from the command line:
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soliscalc -run input [-out outfile]

input may be a filename or a double-quoted expression and outfile is the output filename:

soliscalc -run "a=1;b=2;c=a*sin(b)"
soliscalc -run calcin.txt -out calcout.txt

Integer arithmetic in binary, octal and hexadecimal bases:
One can perform integer calculations in binary, octal, decimal and hexadecimal bases in 32 bits
unsigned format directly within the console, by prefixing the number with 0b for binary base, 0o
for octal base and 0x for hexadecimal base: just type the expression and press enter:

0xFFF7 + 12 + 0b111 + 0o547

To show result in hexadecimal, set accordingly the numerical output format (see listing 3.4):

format:hex

To solve a nonlinear equation f(x) = 0:

solve(x^2 - 2, 0, 10)

The syntax is solve(function, xl, xh) where function is the f(x) function expression (ex-
ample: xˆ2 - 2 ), xl the x lower limit of the interval where the solution is to be found and xh

the x higher limit (xl and xh are optional).

A session (calculations history) can be saved in a text file (with extension .soliscalc) and
retrieved later: menu File/Save and File/Open.
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Figure 4.1: Monocrystalline silicon PN diode current-voltage characteristic simulated using Solis,
PC1D and Atlas R©. The symbols indicates the characteristics simulated using Atlas R© from
Silvaco R© and PC1D, and the straight line the Solis simulated one.

Four examples are given here:

• A silicon solar cell, using the core functionality of the simulator. A monocrystalline N+P

Silicon solar cell is considered and the effect of the absorber thickness is highlighted.

• A monocrystalline N+P Silicon solar cell using a Gaussian doping gradient created using
a Lua defined model.

• A ZnO/CdS/CZTS solar cell [1].

• An AlGaN ultraviolet Schottky detector, using custom user-defined models code in Lua.
This wide bandgap material and its alloys (in particular InGaN, AlGaN and BGaN) are
particularly interesting for optoelectronic applications [16, 17, 18, 19, 20].

All the input and model files are included in the Solis examples/simulator directory. It is
advised to copy the examples directory content to another location to keep the original examples
untouched.

4.1 Comparison between Solis, PC1D and Atlas

In addition to the examples detailed in the following sections, one can compare results ob-
tained with other simulators and, in particular, the reference commercial simulator Atlas R© from
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Silvaco R© and the main one-dimensional academic simulator PC1D. To compare results obtained
with different simulators, one have to set the same physical parameters and to check that the
used models, the excitation parameters and numerical methods are expected to give comparable
results.

Figure 4.1 shows, as an example, a monocrystalline silicon PN diode current-voltage charac-
teristic simulated using Solis, PC1D and Atlas R© from Silvaco R©. The simulation files for Solis,
Atlas R© and PC1D are included in the Solis examples/simulator directory as:
compare01_silicon_iv.solis for Solis
compare01_silicon_iv.in for Atlas R©

compare01_silicon_iv.prm for PC1D

4.2 Example 1: Silicon Solar Cell

The simulated silicon solar cell is a standard N+P monocrystalline cell with a thin (1 µm)
highly n-doped emitter and a thick (> 50 µm) p-doped absorber. To simulate this solar cell,
one can use: the simulator deriver solis in command line, the code editor SolisEdit, or the
graphical device editor SolisDevice:

• using the simulator driver soliscomp in command line. Open a command prompt
window or a console and go to the directory where you copied the examples/simulator

directory content. If not yet done, add the bin directory to the PATH (refer to the operating
system to see how to do so) to be able to run the Solis tools from any location. When
ready, just type:

soliscomp -run example01_silicon_solarcell.solis

The example01_silicon_solarcell.solis input file content is shown in listing 4.1 and
located in the examples/simulator directory.

• using the Solis code editor SolisEdit. Launch SolisEdit, located in the bin direc-
tory, and open example01_silicon_solarcell.solis. Click the Run button (or select
Run/Run menu, or press F12 key).

• using the Solis graphical device editor SolisDevice. Launch SolisDevice, located in
the bin directory, and open example01_silicon_solarcell.solis. Click the Run button
(or select Run/Run menu, or press F12 key).

Using SolisDevice is probably the easiest way since everything is done graphically. It is
not even necessary to know the Solis syntax to perform simulation when using SolisDevice.
But if you prefer to have a greater control over the code, you can use SolisEdit that offers all
needed functionality. With SolisEdit, one can also create and edit Lua models, using the same
environment and, in addition, edit documents in other formats such as LaTeX, Python or C.
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# Solis <SL>
# The above first line is mandatory
# Solis <Version 2.0 Build 2107>

[Device]
Name="c-Si Solar Cell"
Temperature =300

[Layer1]
Material="Si"
Thickness =1
Dopant.N =1e+20
Dopant.Taun =1e-4
Dopant.Taup =1e-4
Dopant.Type="Donor"
Mesh.Points =10

[Layer2]
Material="Si"
Thickness =100
Dopant.N =1e+17
Dopant.Taun =1e-4
Dopant.Taup =1e-4
Dopant.Type="Acceptor"
Mesh.Points =1000

[Anode]
Anode.Type="Ohmic"

[Cathode]
Cathode.Type="Ohmic"

[Voltage]
Voltage.Source="Sweep"
Voltage.Start =-0.7
Voltage.End =0
Voltage.Step =0.01
Voltage.Jinf =0
Voltage.Jsup =0.1

[Light]
Light.Source="AM1.5"

[Numeric]
Numeric.Method="Gummel"
Numeric.Mesh="Layer"

[Command]
Command.Plot="Yes"

Listing 4.1: Silicon Solar Cell using Core Functionality.
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Figure 4.2: The monocrystalline silicon solar cell current-voltage characteristic under AM1.5
spectrum. The solar cell Solis input code is shown in the listing 4.1. The photovoltaic per-
formances obtained for this solar cell are: efficiency η = 15.696 % ; short-circuit current
JSC = 0.028 A/cm2 ; open-circuit voltage VOC = 0.661 V ; fill factor FF = 83.87 % ; se-
ries resistance RS = 1 Ω.cm2 ; shunt resistance RP = 33980 Ω.cm2.

The simulation ended after a few seconds (less than two seconds on an Intel i7 2.9GHz
quad core processor) and outputs the solar cell current-voltage characteristic under AM1.5 solar
illumination and the spatial distribution of potential, electric field, Fermi levels, conduction and
valence band, carrier concentration, doping and traps concentration, currents (electrons, holes
and total), photogeneration and recombination (Auger, direct and SRH).

The current-voltage characteristic under AM1.5 is shown in figure 4.2. The solar cell per-
formance (open-circuit voltage, short-circuit current, fill factor and efficiency) are automatically
determined by Solis.

In the code (or using the graphical device editor), perform simulation by varying the thick-
ness from 5 to 300 micrometers and note the efficiency vs thickness. Figure 4.3 shows this
variation of efficiency reproducing what experimentally expected for silicon solar cell: an effi-
ciency saturation beyond a given thickness. Of course, this behavior depends strongly on the
other physical parameters, such as diffusion length, mobility, doping and absorption. A rigorous
mathematical optimization of this solar cell (with respect to, e.g., thickness and doping) could
be performed using the SLALOM tool [21] with Solis as a backend simulation engine.

4.3 Example 2: Silicon Solar Cell with Gradient Doping

In the previous example, we use only Solis core functionality to simulate a silicon solar cell.
It is also possible to use the embedded Lua scripting engine to include, for example, a doping
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Figure 4.3: The monocrystalline silicon solar cell efficiency variation with the absorber thickness.
The solar cell Solis input code is shown in the listing 4.1 with an absorber thickness varying from
5 to 360 micrometers.

profile either theoretical or deduced from experimental measurements using, e.g., the capacitance-
voltage technique. To illustrate this feature, let us simulate a monocrystalline silicon solar cell
consisting of a p-type wafer implanted with phosphorous to create the N+P solar cell with a
thin N+ region. To simulate this solar cell, one can create a Solis device with only one layer 1,
corresponding to the p thick absorber, and a n-doping profile (Gaussian, exponential or empirical)
in Lua.

This solar cell input code is shown in listing 4.2.

# Solis <SL>
# The above first line is mandatory
# Solis <Version 2.0 Build 2107>

[Device]
Name="c-Si Solar Cell"
Temperature =300

[Layer1]
Material="Si"
Thickness =100
Mesh.Points =1000
Dopant.Model="example02_silicon_doping.lua"
Index.Model="example02_silicon_index.lua"

1Since Solis natively handles grading, devices can be simulated with only one layer and a graded doping (and/or
graded bandgap, etc.).
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[Anode]
Anode.Type="Ohmic"

[Cathode]
Cathode.Type="Ohmic"

[Voltage]
Voltage.Source="Sweep"
Voltage.Start =-0.7
Voltage.End =0
Voltage.Step =0.01
Voltage.Jinf =0
Voltage.Jsup =0.1

[Light]
Light.Source="AM1.5"

[Numeric]
Numeric.Method="Gummel"
Numeric.Mesh="Layer"

[Command]
Command.Plot="Yes"

Listing 4.2: Silicon Solar Cell with Gradient Doping using Lua Defined Model.

This input file, named example02_silicon_solarcell_graded.solis, is located in the
examples/simulator directory. The doping profile and refractive index and extinction coef-
ficient model are defined in Lua files located also in the examples/simulator directory, and
shown in listings 4.3 and 4.4.

--------------------------------------------------------------
-- File: example02_silicon_doping.lua
-- Solis <Version 2.0 Build 2107>
--------------------------------------------------------------
function sol_doping(position , thickness)

Na = 1e15 -- background acceptor density in 1/cm3
N0 = 1e20 -- donor density at the layer surface in 1/cm3
Nr = 1e19 -- reference density in 1/cm3
Taun = 1e-4 -- electron lifetime (seconds)
Taup = 1e-4 -- hole lifetime (seconds)
E = 0 -- activation energy (eV)
F = 1 -- degeneracy factor
graded = true -- set graded to true in this case
posr = 0.2
Nd = N0 * math.exp(-(position * position) / (posr * posr))
return Na, Nd , Nr, Taun , Taup , E, F, graded , true

end
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Listing 4.3: Gradient Doping Lua Model.

--------------------------------------------------------------
-- File: example02_silicon_index.lua
-- Solis <Version 2.0 Build 2107>
--------------------------------------------------------------

function sol_index(position , thickness , bandgap , lambda)
Eph = 1.23984 / lambda
Eg = 1.12
kA = 0.05
graded = false
n = 3.42 -- refractive index
k = 0 -- extinction coefficient
if (Eph >= Eg) then

k = (kA * ((Eph - Eg) / Eg) * ((Eph - Eg) / Eg))
else

k = 0.0
end
return n, k, graded , true

end

Listing 4.4: Index Lua Model.

Launch SolisEdit or SolisDevice and open example02_silicon_graded.solis. Click the
Run button (or select Run/Run menu, or press F12 key). The found efficiency, η = 14.01 %,
could be optimized by studying in detail the effect of the doping gradient, thickness, diffusion
length, etc. This kind of study is also useful for thin films solar cells where the control of the
doping profile plays an important role in the efficiency optimization.

4.4 Example 3: CZTS Solar Cell

The CZTS, Copper Zinc Tin Selenide Cu2ZnSnSe4, is become a promising material for thin
films solar cells [22] mainly because of the abundance of its elements and its photovoltaic effi-
ciency, comparable, at least for the best laboratory samples, to the efficiency of well-established
CIGS solar cells [23, 24]. For such a "new" material, it is often necessary to be able to define
custom physical models based on or extrapolated from experimental data. We will use, in this
example, the Lua scripting language to define one of these physical models: the index/absorption.

This ZnO/CdS/CZTS solar cell input code is shown in listing 4.5.

# Solis <SL>
# The above first line is mandatory
# Solis <Version 2.0 Build 2107>

[Device]
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Name = "CZTS Solar Cell"
Temperature = 300

[Layer1]
Material = "ZnO"
Thickness = 0.1
Mesh.Points = 100
Dopant.N = 1e+18
Dopant.Type = "N"
Dopant.Taun = 1e-7
Dopant.Taup = 1e-7

Index.Model = "example03_czts_solarcell_index.lua"

[Layer2]
Material = "CdS"
Thickness = 0.1
Mesh.Points = 100
Dopant.N = 1e+18
Dopant.Type = "N"
Dopant.Taun = 1e-7
Dopant.Taup = 1e-7

Index.Model = "example03_czts_solarcell_index.lua"

[Layer3]
Material = "CZTS"
Thickness = 1
Mesh.Points = 500
Dopant.N = 1e+16
Dopant.Type = "P"
Dopant.Taun = 1e-7
Dopant.Taup = 1e-7

Index.Model = "example03_czts_solarcell_index.lua"

[Anode]
Anode.Type = "Ohmic"

[Cathode]
Cathode.Type = "Ohmic"

[Voltage]
Voltage.Source = "Sweep"
Voltage.Start = -1
Voltage.End = 0
Voltage.Step = 0.01
Voltage.Jinf = 0
Voltage.Jsup = 0.1
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[Light]
Light.Source = "AM1.5"

[Numeric]
Numeric.Method = "Gummel"
Numeric.Mesh = "Layer"

[Command]
Command.Plot = "Yes"

Listing 4.5: CZTS Solar Cell with Index Lua Defined Model.

This input file, named example03_czts_solarcell.solis, and index model, as shown in
4.6 (for ZnO, CdS and CZTS), are located in the examples/simulator directory. The refractive
index model would have been defined for each material in a separate file. Using one file is just
for clarity (the code could also be adapted in the function, using the bandgap value).

--------------------------------------------------------------
-- Solis <Version 2.0 Build 2107>
--------------------------------------------------------------

function sol_index(position , thickness , bandgap , lambda)
Eph = 1.23984 / lambda
Eg = bandgap
kA = 0.2
graded = false

n = 2.59
if (Eph >= Eg) then

k = (2.0 * Eg / Eph) * kA * sqrt((Eph - Eg) / Eg)
else

k = 0.0
end

return n, k, graded , true
end

Listing 4.6: Index Lua Model for ZnO, CdS and CZTS.

Start SolisEdit (or the graphical device editor SolisDevice), browse to the directory where
you copied the examples/simulator directory content, open the file:
example03_czts_solarcell.solis

and run it.
The obtained current-voltage characteristic under AM1.5 is shown in figure 4.5 and band diagram
in 4.4. The simulation take about eight seconds (on an Intel i7 2.9GHz quad core processor).
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Figure 4.4: The CZTS solar cell band diagram under AM1.5 spectrum. The solar cell Solis input
code is shown in the listing 4.5. The band diagram is obtained under short-circuit. EC and EV

are the band edges and EFn and EFp the quasi-Fermi levels.

4.5 Example 4: AlGaN ultraviolet Schottky detector

AlGaN is a III-N wide bandgap compound semiconductor particularly interesting in ultravio-
let (UV) light emission (lasers, LED) and detection [16, 17, 18, 19]. Insensitivity to visible light,
resistance to high radiation levels or high temperature, possibility to cover a large UV range
(from GaN to AlN bandgap) are the main advantages of using AlGaN in UV detection. The
AlGaN Schottky detector do not include any p-doped layer and is thus particularly interesting
since the AlGaN p-doping is difficult to master in these III-N semiconductors.

The input listing in 4.7 is used to simulate an AlGaN Schottky detector with an absorbing
5 nm thick contact layer.

Start SolisEdit (or the graphical device editor SolisDevice), browse to the directory where
you copied the examples/simulator directory content, open the file:
example03_algan_detector.solis

and run it. The obtained external quantum efficiency is shown in figure 4.6. The simulation take
less than one second (on an Intel i7 2.9GHz quad core processor).
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Figure 4.5: The CZTS solar cell current-voltage characteristic under AM1.5 spectrum. The
solar cell Solis input code is shown in the listing 4.5. The symbols indicates the characteristic
simulated using Atlas R© from Silvaco R© and the straight line the Solis simulated one. The pho-
tovoltaic performances obtained for this solar cell are: efficiency η = 19.263 % ; short-circuit
current JSC = 0.0234 A/cm2 ; open-circuit voltage VOC = 0.985 V ; fill factor FF = 82.73 %
; series resistance RS = 1.5 Ω.cm2 ; shunt resistance RP = 1039 Ω.cm2 ; with an integrated
AM1.5 power of 0.099271 W/cm2. The Atlas R© calculated performances are: η = 19.260 % ;
JSC = 0.0236 A/cm2 ; VOC = 0.986 V ; FF = 82.77 % ; with an integrated AM1.5 power of
0.100037 W/cm2. The solar Atlas R© input code, example03_czts_solarcell.in, is located in
the examples/simulator directory.
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Figure 4.6: The AlGaN Schottky UV detector external quantum efficiency spectrum for three
aluminum composition x in AlxGa1−xN. The corresponding Solis input code is shown in the
listing 4.7.
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# Solis <SL>
# The above first line is mandatory
# Solis <Version 2.0 Build 2107>

$xcomp = 0.2
$Workfunc = 5.65
$Affinity = (2.26 * $xcomp) + (4.1 * (1 - $xcomp))
$BarrierHeight = $Workfunc - $Affinity

[Device]
Name = "AlGaN Schottky UV Detector"
Temperature = 300

[Layer1]
Material = "AlGaN"
Thickness = 1
Mesh.Points = 200
Composition.x = $xcomp
Bandgap.Bowing = 1.3 # H Angerer et al. APL 71 (11) 1997
Dopant.N = 1e16
Dopant.Nr = 1e20
Dopant.Taun = 1e-9
Dopant.Taup = 1e-9
Dopant.Type = "D"

[Anode]
Anode.Type = "Schottky"
Anode.Phi = $BarrierHeight
Anode.Index.n = 1.1 # refractiveindex.info
Anode.Index.k = 2.2
Anode.Thickness = 0.005

[Cathode]
Cathode.Type = "Ohmic"

[Voltage]
Voltage.Source = "None"

[Light]
Light.Source = "Sweep"
Light.Start = 0.25
Light.End = 0.35
Light.Step = 0.001
Light.Flux = 1e+15

[Numeric]
Numeric.Method = "Gummel"
Numeric.Mesh = "Layer"

[Command]
Command.Plot = "Yes"
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Listing 4.7: GaN ultraviolet Schottky detector using Lua defined models.
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